0 CpxTRS
↳1 TrsToWeightedTrsProof (BOTH BOUNDS(ID, ID), 0 ms)
↳2 CpxWeightedTrs
↳3 TypeInferenceProof (BOTH BOUNDS(ID, ID), 0 ms)
↳4 CpxTypedWeightedTrs
↳5 CompletionProof (UPPER BOUND(ID), 0 ms)
↳6 CpxTypedWeightedCompleteTrs
↳7 NarrowingProof (BOTH BOUNDS(ID, ID), 0 ms)
↳8 CpxTypedWeightedCompleteTrs
↳9 CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID), 0 ms)
↳10 CpxRNTS
↳11 SimplificationProof (BOTH BOUNDS(ID, ID), 0 ms)
↳12 CpxRNTS
↳13 CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID), 0 ms)
↳14 CpxRNTS
↳15 IntTrsBoundProof (UPPER BOUND(ID), 346 ms)
↳16 CpxRNTS
↳17 IntTrsBoundProof (UPPER BOUND(ID), 145 ms)
↳18 CpxRNTS
↳19 ResultPropagationProof (UPPER BOUND(ID), 0 ms)
↳20 CpxRNTS
↳21 IntTrsBoundProof (UPPER BOUND(ID), 131 ms)
↳22 CpxRNTS
↳23 IntTrsBoundProof (UPPER BOUND(ID), 45 ms)
↳24 CpxRNTS
↳25 FinalProof (⇔, 0 ms)
↳26 BOUNDS(1, n^1)
f(s(x)) → s(s(f(p(s(x)))))
f(0) → 0
p(s(x)) → x
f(s(x)) → s(s(f(p(s(x))))) [1]
f(0) → 0 [1]
p(s(x)) → x [1]
f(s(x)) → s(s(f(p(s(x))))) [1]
f(0) → 0 [1]
p(s(x)) → x [1]
f :: s:0 → s:0 s :: s:0 → s:0 p :: s:0 → s:0 0 :: s:0 |
(a) The obligation is a constructor system where every type has a constant constructor,
(b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols:
f
p
p(v0) → 0 [0]
Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules:
The TRS has the following type information:
Rewrite Strategy: INNERMOST |
Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules:
The TRS has the following type information:
Rewrite Strategy: INNERMOST |
0 => 0
f(z) -{ 1 }→ 0 :|: z = 0
f(z) -{ 2 }→ 1 + (1 + f(x)) :|: x >= 0, z = 1 + x
f(z) -{ 1 }→ 1 + (1 + f(0)) :|: x >= 0, z = 1 + x
p(z) -{ 1 }→ x :|: x >= 0, z = 1 + x
p(z) -{ 0 }→ 0 :|: v0 >= 0, z = v0
f(z) -{ 1 }→ 0 :|: z = 0
f(z) -{ 1 }→ 1 + (1 + f(0)) :|: z - 1 >= 0
f(z) -{ 2 }→ 1 + (1 + f(z - 1)) :|: z - 1 >= 0
p(z) -{ 0 }→ 0 :|: z >= 0
p(z) -{ 1 }→ z - 1 :|: z - 1 >= 0
{ f } { p } |
f(z) -{ 1 }→ 0 :|: z = 0
f(z) -{ 1 }→ 1 + (1 + f(0)) :|: z - 1 >= 0
f(z) -{ 2 }→ 1 + (1 + f(z - 1)) :|: z - 1 >= 0
p(z) -{ 0 }→ 0 :|: z >= 0
p(z) -{ 1 }→ z - 1 :|: z - 1 >= 0
f(z) -{ 1 }→ 0 :|: z = 0
f(z) -{ 1 }→ 1 + (1 + f(0)) :|: z - 1 >= 0
f(z) -{ 2 }→ 1 + (1 + f(z - 1)) :|: z - 1 >= 0
p(z) -{ 0 }→ 0 :|: z >= 0
p(z) -{ 1 }→ z - 1 :|: z - 1 >= 0
f: runtime: ?, size: O(n1) [2·z] |
f(z) -{ 1 }→ 0 :|: z = 0
f(z) -{ 1 }→ 1 + (1 + f(0)) :|: z - 1 >= 0
f(z) -{ 2 }→ 1 + (1 + f(z - 1)) :|: z - 1 >= 0
p(z) -{ 0 }→ 0 :|: z >= 0
p(z) -{ 1 }→ z - 1 :|: z - 1 >= 0
f: runtime: O(n1) [1 + 2·z], size: O(n1) [2·z] |
f(z) -{ 1 }→ 0 :|: z = 0
f(z) -{ 1 + 2·z }→ 1 + (1 + s) :|: s >= 0, s <= 2 * (z - 1), z - 1 >= 0
f(z) -{ 2 }→ 1 + (1 + s') :|: s' >= 0, s' <= 2 * 0, z - 1 >= 0
p(z) -{ 0 }→ 0 :|: z >= 0
p(z) -{ 1 }→ z - 1 :|: z - 1 >= 0
f: runtime: O(n1) [1 + 2·z], size: O(n1) [2·z] |
f(z) -{ 1 }→ 0 :|: z = 0
f(z) -{ 1 + 2·z }→ 1 + (1 + s) :|: s >= 0, s <= 2 * (z - 1), z - 1 >= 0
f(z) -{ 2 }→ 1 + (1 + s') :|: s' >= 0, s' <= 2 * 0, z - 1 >= 0
p(z) -{ 0 }→ 0 :|: z >= 0
p(z) -{ 1 }→ z - 1 :|: z - 1 >= 0
f: runtime: O(n1) [1 + 2·z], size: O(n1) [2·z] p: runtime: ?, size: O(n1) [z] |
f(z) -{ 1 }→ 0 :|: z = 0
f(z) -{ 1 + 2·z }→ 1 + (1 + s) :|: s >= 0, s <= 2 * (z - 1), z - 1 >= 0
f(z) -{ 2 }→ 1 + (1 + s') :|: s' >= 0, s' <= 2 * 0, z - 1 >= 0
p(z) -{ 0 }→ 0 :|: z >= 0
p(z) -{ 1 }→ z - 1 :|: z - 1 >= 0
f: runtime: O(n1) [1 + 2·z], size: O(n1) [2·z] p: runtime: O(1) [1], size: O(n1) [z] |